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Abstract. A number of ways in which a quadratic lattice can be fully covered with given 
numbers of rectilinear r-mers(r P 2) is estimated by a combinatorial method involving a 
series expansion. 

1. Introduction 

One of the simplest, yet unsolved, problems in lattice statistics is the pure r-mer 
problem in which each site of a lattice is singly occupied by one element of a rectilinear 
r-mer molecule. The pure r-mer problem is characterised by the residual entropy or 
‘molecular freedom’ per r-mer 4” defined so that the number of arrangements of 
n r-mers on a lattice of n x r sites asymptotically (&)”. The exact solution for the case 
of dimers was obtained by Fisher (1961) and Kasteleyn (1961) for the square lattice 
and subsequently for other two-dimensional lattices (Kasteleyn 1963). No rigorous 
treatments of the general r-mer problem have yet been given. 

The Bethe approximation on a lattice of coordination number c (Van Craen 1970) 
leads to 

4r = (cr/2)[1- (2/cr)(r - 1)]Cr/2-r+1 (1.1) 

and becomes invalid as r increases (A is less than unity already for r > 3 in the case of a 
square lattice). There are enough numerical data, provided by the matrix method of 
Kramers and Wannier (Van Craen 1970), the Kikuchi method (Kaye and Burley 1977), 
and series expansions (Van Craen and Bellemans 1972), to obtain fair estimates of the 
exact solution of the trimer problem. 

Recently Kowalsky and Priezzhev (1978) and Gagunashvili and Priezzhev (1978) 
have investigated rigorously lower and upper bounds of 4, for arbitrary r B 2. Their 
results are summarised in the following three inequalities: 

#r S (r/2)1’r exp(4G/wr) for r even (1.2) 
I / r  W 

4 r  (T) exp( I arch[2r/(r - 1) -cos 41 d4] for r odd 
wr o 

(1.3) 

& 3 exp(4 G/ r r )  (1.4) 

where G = 0.915 965 . . . (Catalan’s constant). 
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In the present paper we develop a method of approaching the problem which is an 
extension of these works. This method, based on the combinatorial principle of 
inclusion and exclusion, provides a series-expansion technique for estimating the 
molecular freedom per r-mer for arbitrary r 3 2. 

2. Rectilinear polymers on the superlattice 

Consider a planar quadratic mr x nr lattice to which one can attach rectilinear r-mers in 
such a way that every r-mer occupies r lattice points and the lattice is fully occupied by 
r-mers. We denote the lattice points by (x, y )  and define the points of a quadratic m x n 
superfattice as points with coordinates (X, Y) which obey 

X(mod r) = 0, Y(mod r )  = 0. 

To estimate q5r, we use the following propositions (Kowalsky and Priezzhev 1978): 

Proposition 1. Let r(mn) points of the lattice be occupied by mn non-overlapping 
r-mers, arranged on the superlattice so that each site of the superlattice accommodates 
one element of the r-mer. Then the rest of the points may be covered with r-mers in not 
more than one manner. 

So any arbitrary configuration of r-mers is defined by an arrangement of mn r-mers 
on the superlattice. There are 2r different ways in which a superlattice site may be 
occupied and consequently there are altogether (2r)"" possibilities. Many of them, 
however, are unacceptable because of incompatibilities between arrangements of 
different r-mers on the superlattice. 

Let us consider the reasons for which an r-mer configuration C on the superlattice 
may be unacceptable. The simplest of them is the overlap of r-mers covering neigh- 
bouring superlattice points. To clarify other cases we introduce some auxiliary notions. 

By reduced coordinates of the point (x, y )  we understand the pair of integers [i, j ]  
defined by 

i = x(mod r) 

j = y (mod I )  

i E  (0, 1 , .  . . , r-1) 

j E ( 0 ,  1 , .  . . , r -1 ) .  

Let C be a configuration of r-mers on the superlattice and B(C) be the set of 
superlattice bonds containing the lattice points covered by r-mers from C. Each bond 
appears in B(C) 0 , l  or 2 times if there are 0 , l  or 2 r-mers covering this bond. A graph is 
defined by the collection of superlattice sites and the collection of bonds B(C). A cycle 
of this graph is a collection of bonds of the form p1p2, PZp3,. . . , pc-lpl where pipj 
denotes the bond joining superlattice points pi and pi, and all points pl, p2, . . . , pk-l are 
distinct. A cycle is closed with respect to the reduced coordinates [i, j ] ,  i, j f 0 if all 
points of the basic mr x nr lattice belonging to its bonds and having reduced coordinates 
[ i ,  01, [0, j ]  are covered by r-mers from C. A cycle p1p2, p2pl resulting from two 
neighbouring r-mers from C overlapping in one or more basic-lattice points is closed, 
too, with respect to the reduced coordinates of these points. We call any closed cycle a 
contour and we use g(i1, j l ;  i2, j2; . . . ; is, j s )  to denote the contour closed with respect to 
the coordinates [il, j l ] ,  [i2, j2], . . . , [is, is], or g if the values of these coordinates are not 
essential. We will say that the configuration C generates the contour g. Note that 
different configurations can generate the same contour and several contours can 
correspond to one cycle. 
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Proposition 2. (Gagunashvili and Priezzhev 1978.) If the r-mer configuration C on 
the superlattice generates at least one contour g, then a densely packed configuration on 
the basic lattice containing C does not exist. 

Thus, in order to get an explicit expression for 4" we need to exclude, from the total 
number (2r)"" of r-mer configurations on the superlattice, those generating contours. 
Consider the set of all distinct contours (g,}, s = 1 to k, where k is the maximum number 
of contours for a given lattice. Let P be the total number of r-mer configurations on the 
superlattice. Let Pi be the number of configurations generating the contour gi and 
Pi l , i z , .  , . , i, the number generating the contours gilt giz, . . . , gi,. Then by the principle of 
inclusion and exclusion the number of configurations Po generating none of the 
contours is given by 

One may take on trust that excluding the configurations generating contours exhausts 
the set of all unacceptable configurations. At least we have the following statement 
(Priezzhev 1976): 

Proposition 3. In the case r =2, PO is the number of all possible dense and 
non-overlapping arrangements of dimers on the square lattice. 

We conjecture that proposition 3 is valid for all r 5 2. 
If the conjecture holds, we obtain the expression for the molecular freedom of 

r-mers on the basic mr x nr lattice: 

In the opposite case the right-hand side of equation (2.2) is an upper bound of 4,. 

3. Derivation of the series expansion 

Let G, be a set of contours gl, gz, . . . , g, generated by an r-mer configuration on the 
superlattice. The index s denotes the number of superlattice points belonging to 
contours from G,; v(G,) denotes the number of contours in the set G,. Note that one 
may arrange an r-mer on each of mn - s superlattice points which do not belong to G, in 
2r independent ways. We define W(G,) by 

E' (-l)Y(GJ = (2r)""-'W(G,) (3.1) 
C 

where the prime denotes summation over configurations C generating the set G,. By 
definition I W(G,)l is the number of arrangements of s r-mers on the s superlattice sites 
which lead to the set of contours (3,. According to equation (2.1) we have, in the 
notation introduced above, 

= (2r)"" + (2r)mn-z W(G2) + (2r)mn-3 W(Gd + . . . + W(G,,). 
G2 G o  0,. 
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We define the generating function 
N 

A N ( x ) = ( ~ ~ ) ~ (  1 + s = 2  1 oN(s )x ’ )  

where N = mn and 

W N ( S )  = 1 W(Gs) .  
G ,  

In the thermodynamic limit we obtain 

where it can be shown that 

4 s )  = W N ( S ) I N = I .  

From equations (2.2), (3.2), (3.3) and (3.4) it follows that 
m l / r  

q5r=[A(‘)]li‘=(2r)’/’[l+ 2r s=2 1 U ( S ) ( $ ) ~ ]  

(3.3) 

(3.4) 

(3.5) 

From the boundedness of q5r for each fixed r the convergence of the series in equation 
(3.5) follows; so w ( s ) / ( r S 2 ’ ) +  0 for s + 00. We shall see below that the convergence of 
the series is rapid enough to estimate q5, using the first few terms of the series. 

4. Graph data 

To begin the calculation of the coefficients w ( s ) ,  let us consider a few simple cases. 

(i) Case s = 2, r = 3. In this case G2 contains only one contour (v(G2) = 1) from the 
collection g ( l , O ) ,  g (2,0), g (1,O; 2,0), g (0, l), g (0,2), g ( 0 , l ;  0,2). The r-mer 
configurations corresponding to the first three contours are shown in figures 1 (b ) ,  (c) 
and (d). The remaining three contours correspond to vertical r-mers. Thus, for r = 3, 
U N ( 2 )  = -6N and o(2) = -6. A simple calculation shows that for arbitrary r 

0 ~ ( 2 )  = -2[r(r- 1)/2]N, w (2) = -r(r - 1). 

I a) 16) I C )  ldl 

Figure 1. Case s = 2, r = 3. Open circles denote superlattice points. (a) A cycle; ( b ) ,  ( c ) ,  (d )  
r-mer configurations generating contours g(l,O), g(2,0), g(1,O; 2,O). 

(ii) Case s = 3, r = 3. One of the two configurations appearing in this case is shown 
in figure 2. We see that ~ ~ ( 3 )  = 2N, w ( 3 )  = 2. For arbitrary r > 2 we have 
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( a )  (bl 

Figwe 2. ( a )  Two connected cycles in case s = 3. ( b )  The r-mer configuration ( r  = 3) 
generating contours g(1,O) and g(2,O). 

(iii) Case s = 4. This case is illustrated in figure 3. The enumeration of the contours 
corresponding to cycles of type ( a )  leads to 

N ( 2 N  - 7) [ r ( r  - 1)/212. 

(a1 I bl id 

Figure 3. Cycles contributing to the coefficient 4 4 ) .  

Similarly, for the cycles of type (b )  we have 

2 ~ [ r ( r  - 1)/212 

and for those of type ( c )  

0 ( r  = 2 or r = 3). 

Using these expressions, we obtain 

r(r  - 1) 
w ( 4 )  = -7 [ 7 ] * - 2  (6). 

To consider more general cases, let us make first some preliminary remarks. Among 
the set of contours arising on a graph there can appear such pairs of contours g and g' 
that for any configuration of r-mers the presence of g' necessitates the presence of g but 
the inverse does not hold. In that case, following the principle of inclusion and 
exclusion when calculating the coefficient o (s) we should take into account only the 
contribution from contour g. 

Now let us derive general expressions for w ( s )  up to eighth-order. To this end, 
consider all possible types of connected cycles entering into the eighth-order expansion 
(table 1) and calculate the numbers of r-mer configurations generating different 
contours which correspond to each of these cycles. These numbers will be denoted by 
K") for each value of the r-mer length; their dependence on other indices is shown in 
table 1. Indices i, j ,  k,  1, n take values such that the total number of cycle vertices does 
not exceed eight. Formulae for calculating the number of r-mer configurations K") can 
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Table 1. 

K''' n Type of cycle n Type of cycle 

5 EZx K!' 11 

be found in appendix A, where we use the convention that a sum is equal to zero if the 
lower index in the summation exceeds the upper one. 

The formulae (Al)-(All) are derived by using the fact that the combinatorial 
problem of finding sequences of overlapping r-mers on i consecutive bonds can be 
considered as the problem of finding a sequence of i decreasing numbers from the set 
(0 ,  1, . . . , r - 1). Appendix B contains formulae for calculating the coefficients w (s) 
expressed through K(r) .  

5. Results 

The expansion coefficients w ( s ) ,  s = 2 ,3  . . . 8 obtained by evaluating expressions 
(A1)-(All) and (Bl)-(B7) for the first twenty values of r are listed in table 2. The series 
in equation (3.5) has been truncated after the eighth term and the resulting values of the 
molecular freedom 

8 

s=2 

are listed in the last column of table 2. These expansions are not long enough to lead to 
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Table 2. Expansion coefficients o(s) and molecular freedom 4,. 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

-2 
-6 
-12 
-20 
-30 
-42 
-56 
-72 
-90 
-110 
-132 
-156 
-182 
-210 
-240 
-212 
-306 
-342 
-380 

0 
2 
8 
20 
40 
70 
112 
168 
240 
330 
440 
572 
728 
910 
1120 
1360 
1632 
1938 
2280 

-7 
-63 
-254 
-710 
-1605 
-3157 
-5628 
-9324 
-14595 
-21835 
-31482 
-44018 
-59969 
-79905 
-104440 
-134232 
-169983 
-212439 
-262390 

0 
72 
576 
2402 
7212 
17682 
37744 
72828 
130104 
218724 
350064 
537966 
798980 
1152606 
1621536 
2231896 
3013488 
4000032 
5229408 

-50 
-1302 
-10596 
-49900 
-170702 
-473354 

-1 131 368 
-2420664 
-4753770 
-8718974 
-15124428 
-25047204 
-39887302 
-61426610 
-91892816 
- 134028272 
-191163810 
-267297510 
-367178420 

0 
2552 
40464 
280600 
1263200 
4336502 
12346448 
30641256 
68450640 
140699460 
2703 15584 
491091744 
851 161 168 
1417146770 
2279043680 
3555894896 
5402319840 
8015955600 
11645870640 

-456 
-34616 
-575305 
-4597065 
-23904755 
-93731071 
-300998182 
-833031414 
-2054905650 
-4624997850 
-9659711831 
-18959734183 
-35311572933 
-62879523305 
- 107704597660 
-178328349436 
-286560913644 
-4484139792 12 
-685220801205 

1.82 
1.66 
1.55 
1.48 
1.42 
1.38 
1.34 
1.32 
1.29 
1.27 
1.26 
1.24 
1.23 
1.22 
1.21 
1.20 
1.19 
1.18 
1.17 

an accurate estimate of 4, by using the Pad6 technique. Nevertheless, to make a 
comparison with the results of previous papers we have estimated d2 and (63 by 
evaluating the Pad6 approximants P(2,2) and P(4,4) to the series 

- 2 ~ ~ - 7 ~ ~ - 5 0 ~ ~ - 4 5 6 ~ '  

at x = 4 and 

-6x2+ 2x3 -63x4+72x5- 1 3 0 2 ~ ~  + 2552~' -  35912~'  
1 at x = 5. 

The results of this calculation are listed in table 3, together with the results of Nagle 
(1966), Gaunt (1969) and Van Craen and Bellemans (1972). Table 3 clearly demon- 
strates the accuracy of the calculation of 4, at r = 2 and r = 3. Information about the 

Table 3. Values of the molecular freedom b2 per dimer and 43 per trimer for square lattice. 

Truncated Pad6 
series approximan t 

t Nagle (1966) 1.7694 1.7905 
Gaunt (1969) 1.7728 1.78-1.80 
this paper 1.82 1.81 
$ Van Craen and 
Bellemans (1972) - 1.57 
This paper 1.66 1.64 

t Exact value of 
$Estimate of 43= 1*60*0*01 obtained by matrix method (Van 
Craen 1975). 

= 1.7916.. . (Kasteleyn 1961, Fisher 1961). 



2138 V B Priezzhev 

calculational accuracy at larger r can be obtained by comparing the calculated dr  with its 
upper and lower bounds reported in the Introduction. For instance, at r = 20, from 
equations (1.2) and (1.4), we have 1.19 3 4203 1.06, 420 = 1.17, so that the accuracy is 
no worse than (-lo%, +2%). 

Appendix A 

(i+;+l) 
Kk" (i, i, k, I, n) = 

mi-1 m2-1 r-l P,-1 P2-1 min(ml,P1)- l  

m , = j  m j - l = j - l  m l = l  P k = k  P k - 1 x k - l  PI-1 q l = n - l  

r-1 m 3  m2 m i  

m a = l  m 2 = l  m l = l  m = l  

m l = l  m = l  

Appendix B 

w(2) = -2K:" (2) 

w(3) = 2K:"(3) 

o(4) = -7[K:" (2)12 - 2K:" (4) 

w ( 5 )  = 24K:"(2)K:"(3)+2K:"(5) 




